Functionally substituted distanthianes.

Dialkyltin oxides, R_2SnO , have recently been shown to react with tin halides, $R'_{4-n}SnX_n$, to give functionally substituted distannoxanes of the general formula $XR_2Sn \cdot O \cdot SnR'_3$, $XR_2Sn \cdot O \cdot SnR'_2X$, $XR_2Sn \cdot O \cdot SnR'X_2$, and $XR_2Sn \cdot O \cdot SnX_2 \cdot OH^1$. Similar reactions have now been established for dialkyltin sulphides, giving functionally substituted distanthianes.

If dialkyltin sulphides in benzene or carbon tetrachloride are warmed briefly with compounds R_2SnX_2 (X = F, Cl, Br, I, CNS, OMe, O·CO·R), the appropriate distanthianes (I), are formed in good yield. The same products are obtained when the compounds $R_2Sn(OMe)X^2$ are treated with hydrogen sulphide, but the distannooxanes, $XR_2Sn \cdot O \cdot SnR_2X$, under the same conditions are relatively inert.

$$R_2 SnS + R_2 SnX_2 \rightarrow XR_2 Sn \cdot S \cdot SnR_2 X$$
I

The distanthianes (I) (unlike the corresponding distannoxanes³) are monomeric in benzene, and are stable to air, but react immediately with bipyridyl to give R_2SnX_2 bipy and R_2SnS in good yield. This ready reversion to progenitors may explain why other attempts to isolate the distanthianes (I) have failed⁴; the only previous example of a compound of this type appears to be 1,1,3,3-tetrabutyl-1,3dichlorodistanthiane (m.p. 35°), which was obtained by Schmidt and Schumann by heating tributyltin chloride with sulphur at 180–190° for 14 h⁵.

TABLE 1

FUNCTIONALLY SUBSTITUTED DISTANTHIANES

Type	Formula	$M.p. (^{\circ}C)$
ſ	ClMe ₂ Sn·S·SnMe ₂ Cl	59-61
I	BrMe ₂ Sn·S·SnMe ₂ Br	39-42
I	FBu ₂ Sn·S·SnBu ₂ F	90-93
I	ClBu ₂ Sn·S·SnBu ₂ Cl	35.5–37
Ι	SCNBu ₂ Sn·S·SnBu ₂ NCS	115–117
I	$MeO \cdot Bu_2 Sn \cdot S \cdot Sn Bu_2 \cdot OMe$	86–88
I	C_7H_{15} ·CO·O·Bu ₂ Sn·S·SnBu ₂ ·O·CO·C ₇ H ₁₅	oil
II	$ClBu_2Sn \cdot S \cdot SnPhCl_2$	38–38.5
П	ClBu ₂ Sn·S·SnBuCl ₂	28-30
П	$BrBu_2Sn \cdot S \cdot SnBuBr_2$	oil

Dialkyltin sulphides and alkyltin trichlorides or tribromides react exothermically on mixing to give 1,1,3-trialkyl-1,3,3-trihalogenodistanthianes (II).

$$\begin{array}{c} R_2 SnS + R'SnX_3 \rightarrow XR_2 Sn \cdot S \cdot SnR'X_2 \\ II \end{array}$$

These are again stable to air and are monomeric in benzene.

The reaction of tin tetrachloride or tetrabromide with dibutyltin sulphide was similar to that of dry dibutyltin oxide: only the dialkyltin dihalide, and no distantiane, was obtained.

 $R_2SnS + SnX_4 \rightarrow R_2SnX_2 + (SSnX_2)$

No reaction could be established between dialkyltin sulphides and trialkyltin halides, but it appears possible that 1,1,3,3,3-pentaalkyl-1-halogenodistanthianes may be prepared by treating the corresponding distannoxanes¹ with hydrogen sulphide.

Examples of these functionally substituted distanthianes are given in Table 1; satisfactory analyses have been obtained for all these compounds.

William Ramsay and Ralph For. ter Laboratories,ALWYN G. DAVIESUniversity College, London, W.C.1 (Great Britain).P. G. HARRISON

1 A. G. DAVIES AND P. G. HARRISON, J. Organometal. Chem., 7 (1967) P13.

2 A. G. DAVIES AND P. G. HARRISON, J. Chem. Soc., [C] (1967) 298.

3 D. L. Alleston, A. G. Davies and M. Hancock, J. Chem. Soc., (1964) 5744.

- 4 T. HARADA, Sci. Papers Inst. Phys. Chem. Res., Tokyo, 39 (1942) 419; R. C. Poller and J. A. Spillman, J. Organometal. Chem., 7 (1967) 259.
- 5 M. SCHMIDT AND H. SCHUMANN, Chem. Ber., 96 (1963) 3017.

Received February 10th, 1967

J. Organometal. Chem., 8 (1967) P19-P20